好学若饥 - 让我们共同前行!

好学网-中国教育学习资讯平台!Haoxuee.COM



当前位置: 好学网首页 > 高中 >

2018高二数学下册圆的方程知识点

时间:2018-05-26 10:04来源:好学网 作者:haoxuee 点击:
圆锥曲线性质: 一、圆锥曲线的定义 1.椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆. 2.双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线.即. 3.圆锥曲线的统一定义:到

       圆锥曲线性质:

一、圆锥曲线的定义

1.椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆.

2.双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线.即.

3.圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线.当01时为双曲线.

二、圆锥曲线的方程

1.椭圆:+ =1(a>b>0)或 + =1(a>b>0)(其中,a2=b2+c2)

2.双曲线:- =1(a>0,b>0)或 - =1(a>0,b>0)(其中,c2=a2+b2)

3.抛物线:y2=±2px(p>0),x2=±2py(p>0)

三、圆锥曲线的性质

1.椭圆:+ =1(a>b>0)

(1)范围:|x|≤a,|y|≤b(2)顶点:(±a,0),(0,±b)(3)焦点:(±c,0)(4)离心率:e= ∈(0,1)(5)准线:x=±

2.双曲线:- =1(a>0,b>0)(1)范围:|x|≥a,y∈R(2)顶点:(±a,0)(3)焦点:(±c,0)(4)离心率:e= ∈(1,+∞)(5)准线:x=± (6)渐近线:y=± x

3.抛物线:y2=2px(p>0)(1)范围:x≥0,y∈R(2)顶点:(0,0)(3)焦点:( ,0)(4)离心率:e=1(5)准线:x=-

练习题:

1、若圆(x-a)2+(y-b)2=r2过原点,则( )

A.a2-b2=0 B.a2+b2=r2

C.a2+b2+r2=0 D.a=0,b=0

【解析】选B.因为圆过原点,所以(0,0)满足方程,

即(0-a)2+(0-b)2=r2,

所以a2+b2=r2.

2、已知定点A(0,-4),O为坐标原点,以OA为直径的圆C的方程是( )

A.(x+2)2+y2=4

B.(x+2)2+y2=16

C.x2+(y+2)2=4

D.x2+(y+2)2=16

【解析】选C.由题意知,圆心坐标为 (0,-2),半径r=2,其方程为x2+(y+2)2=4.

3、圆(x+2)2+y2=5关于原点(0,0)对称的圆的方程是( )

A.(x-2)2+y2=5

B.x2+(y-2)2=5

C.(x+2)2+(y+2)2=25

D.x2+(y+2)2=25

【解析】选A.圆心(-2,0)关于原点对称的点为(2,0),所以所求圆的方程为(x-2)2+y2=5.

(责任编辑:haoxuee)

赞一个
(1)
100%
嘘一下
(0)
0%
------分隔线----------------------------